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A quantum spin system is discussed where a heat flow between infinite reser-
voirs takes place in a finite region. A time-dependent force may also be acting.
Our analysis is based on a simple technical assumption concerning the time
evolution of infinite quantum spin systems. This assumption, physically natural
but currently proved for few specific systems only, says that quantum informa-
tion diffuses in space-time in such a way that the time integral of the com-
mutator of local observables converges: �0

&� dt &[B, :tA]&<�. In this setup
one can define a natural nonequilibrium state. In the time-independent case, this
nonequilibrium state retains some of the analyticity which characterizes KMS
equilibrium states. A linear response formula is also obtained which remains
true far from equilibrium. The formalism presented here does not cover situa-
tions where (for time-independent forces) the time-translation invariance and
uniqueness of the natural nonequilibrium state are broken.

KEY WORDS: Nonequilibrium; KMS state; quantum statistical mechanics;
linear response; heat reservoir.

INTRODUCTION

Traditional nonequilibrium statistical mechanics has been focussed on
approach to equilibrium (Boltzmann and followers) and on situations close
to equilibrium (Onsager reciprocity, Green-Kubo formula). More recently,
a fruitful rigorous study of nonequilibrium steady states for classical
systems far from equilibrium has been initiated, using the concept of
Gaussian thermostat.(6, 11) Among the results are the Gallavotti-Cohen fluc-
tuation theorem, (8, 9) the Dettmann-Morriss pairing rule, (2, 16) and a general
linear response formula(13) (see also Dorfman, (3) Ruelle(14) for reviews). In
the approach just referred to, finite classical systems are driven away from
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equilibrium by nonhamiltonian forces, and cooled by a Gaussian thermostat.
The more natural approach which uses Hamiltonian forces and infinite heat
baths is more difficult, and results there are still preliminary.(4, 5)

Compared with the classical theory, quantum statistical mechanics
exhibits significant differences: equilibrium states (KMS states) are more
intrinsically tied to the dynamics, and the forces are fundamentally
Hamiltonian. In particular, the use of a Gaussian thermostat does not
appear feasible. We are thus led to studying infinite systems with
Hamiltonian forces. Fortunately, the dynamics of infinite quantum spin
systems is relatively amenable to study: a C*-algebra A is associated with
the system, and the time evolution is described by a one-parameter family
(:t) of automorphisms of A.

The physical situation which we wish to discuss is that of a finite
quantum system 7 interacting with infinite reservoirs Ra , (a=1, 2,...) in
equilibrium at different temperatures, chemical potentials,... . The system 7
is also acted upon by a force which may be time dependent:

�R1

Time dependent force ww� �7 �R2

} } }

For notational purposes it is convenient to write 7=R0 . Note that a finite
system subjected to time dependent forces will in general heat up, and that
a single reservoir R1 can act as a thermostat. Another case of interest is
when two reservoirs R1 , R2 at different temperatures interact via 7 (no
time dependent force is assumed here). Variations of the setup just
described have been considered by a number of authors (see in particular
Hepp and Lieb, (10) Spohn and Lebowitz, (15) Jaks� ic� and Pillet(12)); an
important feature of the present approach is that it uses more realistic
reservoirs.

The strategy of analysis that we shall adopt in this paper will be to
compare the time evolution (:t) of the interacting system described above
with a noninteracting time evolution (:$ t) where 7, R1 , R2 ,... evolve inde-
pendently. Let _ be an invariant state for (:$ t), where the reservoirs R1 ,
R2 ,... are at temperatures ;&1

1 , ;&1
2 ,... . It will be possible to determine a

nonequilibrium natural state \t for the interacting system by the condition
that it reduces to _ in the distant past.

To establish the desired relation between the evolutions (:t) and (:$ t),
we assume that the interactions between 7 and R1 , R2 ,..., and the time
dependent force acting (possibly) on 7 are of local nature. There is
however at this point a serious technical problem: our definition of natural
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nonequilibrium states requires that, when A, B are spatially localized, time
integrals of the type �0

&� dt &[B, :tA]& converge (and similarly for
integrals involving (:$ t)). These conditions (further discussed in Section 2.1)
are physically natural but have been proved to hold only for very special
quantum spin systems.

In view of the above difficulty, we shall in what follows adopt an
axiomatic approach. We shall make technical assumptions (A1)�(A5) on
the dynamics of our quantum spin system, and derive our results from
these assumptions. While (A1)�(A4) could easily be seen to hold for
specific systems (see [1, Section 6.2]), there is a problem with (A5), as dis-
cussed above. The interest of the results obtained seems however to justify
our axiomatic approach.

In Section 1 we discuss (A1)�(A5) and derive the existence of a
*-isomorphism |t between the C*-algebra A of the full interacting system,
and the C*-algebra A> of the union of the infinite reservoirs R1 , R2 ,...
(7 being omitted). The isomorphism |t intertwines between the time
evolution (:t) of the full iteracting system and the noninteracting time
evolution (:$ t) restricted to the union of the reservoirs (see Theorem 1.6).

In Section 2 we show how to define nonequilibrium natural states \t

asymptotic in the distant past to noninteracting equilibrium states (\t is
related to these states via |t). In Section 3 we consider the case of time-
independent forces, and assume that the equilibrium states of the nonin-
teracting reservoirs are KMS states at different temperatures. The non-
equilibrium state \t=\ is now time-independent and retains some of the
analyticity which characterizes KMS states.

In Section 4 we obtain a linear response formula for $\ when there is
a small change $h in the interaction of the finite system 7 with the infinite
reservoirs (the temperature of the reservoirs is not changed). This quantum
linear response formula holds far from equilibrium and is very similar to
the corresponding formula for classical systems.(13)

1. ASSUMPTIONS (A)

The following assumptions (A1)�(A5) specify our mathematical setup.

(A1) A, and A0 , A1 , A2 ,... are (finitely many) C*-algebras with unit
elements such that A is the C* tensor product of the Aa (a=0, 1, 2,...),
and A0 is the algebra of n_n matrices for some finite n�0.

There may be several norms on the tensor product }a�0 Aa satisfying
the C* property &A*A&=&A&2 and the cross-norm property &}a�0 Aa&
=>a�0 &Aa&. If the Aa are identified to operator algebras on Hilbert
spaces Ha , the operator norm of }a�0 Aa acting on }� a�0 Ha does not
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depend on the choice of the faithful representations, see [1, Section 2.7.2].
The closure }� a�0 Aa of }a�0 Aa for this operator norm is our C* tensor
product of the Aa . We shall later also use A>=}� a>0 Aa and denote by
10 , 1> the unit element of A0 , A> .

The algebra A0 corresponds to the system 7=R0 , and A1 , A2 ,... to
the reservoirs R1 , R2 ,..., while A describes the total system.

(A2) (:$ t), (:t) are one-parameter families of *-automorphisms of A

such that

:$ t= }
a�0

:$ t
a

and (:$ t
a) is a one-parameter group of *-automorphisms of Aa , i.e.,

:$ 0
a=identity, :$ s

a:$ t
a=:$ s+t

a , (:$ t
a Aa)*=:$ t

aAa*.

We shall write :$ (t, s)=:$ s&t, :(t, s)=(:t)&1:s, and also :$ >(t)=:$ t
>=

}a>0 :$ t
a .

The evolution (:$ t) describes the uncoupled systems 7=R0 , R1 , R2 ,...,
while (:t) describes the total system where 7 is coupled to the reservoirs
and subjected to time-dependent forces.

(A3) There is a dense subset D/A and for each s # R there is =>0
such that, if D # D, the functions

t$ [ :$ (t$, t) :(t, s) D, t$ [ :(t$, t) :$ (t, s) D

are (norm-)differentiable when t, t$ # (s&=, s+=).

Clearly, one can assume that D is a *-subalgebra of A. Note also that
the families (:$ t), (:t) are strongly continuous because for each s # R and
A # A, the functions t [ :$ tA, :tA, or equivalently t [ :$ &tA, :&tA, or
equivalently for each B # A the functions t [ :$ (t, s) B, :(t, s) B are con-
tinuous on (s&=, s+=) as uniform limits of continuous (in fact differen-
tiable) functions t [ :$ (t, s) D, :(t, s) D with D # D.

(A4) There is a finite dimensional linear space F such that

A0 �1> /F/A

and a function h: R � F such that h is bounded continuous, self-adjoint
(h=h*), and with the notation of (A3)

d
dt$

(:(t$, t) D$&:$ (t$, t) D$) } t$=t
=&i[h(t), D$]
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if

t # (s&=, s+=), D$ # :$ (t, s) D _ :(t, s) D

This expresses that the interaction between the system 7 and the reser-
voirs is of local nature.

1.1. Lemma

If A # A, the functions

t [ :$ t(:t)&1 A, :t :$ &tA

are differentiable with derivatives

t [ &i:$ t[h(t), (:t)&1A], i:t [h(t), :$ &tA]

We first take A=:sD, D # D. Then (A3) implies that the function
t [ :$ t(:t)&1A is differentiable for t # (s&=, s+=) because

1
t$&t

(:$ t$(:t$)&1A&:$ t(:t)&1 A)=:$ t$ 1
t$&t

(:(t$, t)&:$ (t$, t)) :(t, s) D

Using (A4) we see that the derivative is

&i:$ t[h(t), :(t, s) D]= &i:$ t[h(t), (:t)&1A]

so that

:$ t(:t)&1 A=:$ s(:s)&1 A&i |
t

s
du :$ u[h(u), (:u)&1A] (1)

and this formula remains true for all A # A and all s, t # R [cut [s, t] into
small subintervals and use the density of D in A]. Since u �
:$ ui[h(u), (:u)&1A] is continuous, we see that the derivative of
t [ :$ t(:t)&1A is t [ &i:$ t[h(t), (:t)&1A]. The case of t [ :t :$ &tA is
similar, with

:t :$ &tA=:s:$ &sA+i |
t

s
du :u [h(u), :$ &uA] K (2)
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Note also the formulae

d
dt

:$ (s, t) :(t, s) A=&i:$ (s, t)[h(t), :(t, s) A] (3)

d
dt

:(s, t) :$ (t, s) A=i:(s, t)[h(t), :$ (t, s) A] (4)

which follow directly from Lemma 1.1.

1.2. Lemma

Let :* be obtained from : by the replacement h � h+*k. Then the
functions * � :*(t, s) A are differentiable and

d
d*

:*(s, t) A=i |
t

s
d{ :*(s, {)[k({), :*({, t) A]

Writing 2*=*$&* and 2:=:*$&:*, we obtain from (4)

d
dt

2:(s, t) :$ (t, s) A�2*

=i 2:(s, t)[h(t), :$ (t, s) A]�2*+i:*$(s, t)[k(t), :$ (t, s) A]

and using again (4) this is

=2:(s, t) :*(t, s)�2*
d
dt

:*(s, t) :$ (t, s) A+i:*$(s, t)[k(t), :$ (t, s) A]

Writing 8(s, t)=:*(s, t) :$ (t, s), 8$2(s, t)=2:(s, t) :$ (t, s)�2* we have thus

\ d
dt

8$2(s, t)+ 8(s, t)&1 8(s, t) A

=8$2(s, t) 8(s, t)&1 d
dt

8(s, t) A+i:*$(s, t)[k(t), :$ (t, s) A]

hence

\ d
dt

8$2(s, t)+ 8(s, t)&1 8(s, t) A+8$2(s, t) \ d
dt

8(s, t)&1+ 8(s, t) A

=i:*$(s, t)[k(t), :$ (t, s) A]
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hence

d
dt

(8$2(s, t)) 8(s, t)&1) 8(s, t) A=i:*$(s, t)[k(t), :$ (t, s) A]

hence

(:*$(s, t) :*(t, s) A&A)�2*=(8$2(s, t)) 8(s, t)&1A

=i |
t

s
d{ :*$(s, {)[k({), :*({, s) A] (5)

From this it readily follows that 8$2(s, t) A has a limit 8$(s, t) A when
2* � 0, so that the derivative (d�d*) :*(s, t) A exists (and is equal to
8$(s, t) :$ (s, t) A). Thus

\ d
d*

:*(s, t)+ :*(t, s) A=i |
t

s
d{ :*(s, {)[k({), :*({, s) A]

or

d
d*

:*(s, t) A=i |
t

s
d{ :*(s, {)[k({), :*({, t) A]

as announced. K

Our last assumption will play a crucial role.

(A5) There are dense subsets E/A and E>/A> such that, if
F # F, E # E, E> # E> , then

|
0

&�
ds &[F, (:s)&1E]&<�

|
0

&�
ds &[F, :$ &s(10 �E>)]&<�

We may take for E (resp. E>) a *-subalgebra of A (resp. A>). Condi-
tion (A5) may be taken to mean that, as s � &�, (:s)&1E, :$ &s(10�E>)
diffuse rapidly away from a bounded region, in particular the region of
interaction between the system 7 and the reservoirs (see the further discus-
sion in Section 2.1).
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1.3. Proposition

There are *-morphisms |+
t : A � A and |&

t : A> � A such that, for
all A # A, A> # A> ,

lim
s � &�

:$ (t, s) :(s, t) A=|+
t A

lim
s � &�

:(t, s) :$ (s, t)(10 �A>)=|&
t A>

Using (1) and (2) we see that

:$ s(:s)&1A=(:0)&1A+i |
0

s
dt :$ t[h(t), (:t)&1A]

:s :$ &s(10�A>)=:0(10 �A>)&i |
0

s
dt :t[h(t), :$ &t(10�A>)]

Since h(_) is bounded and takes values in the finite dimensional space F,
(A5) shows that the right-hand sides converge when s � &� provided
A=E # E, A>=E> # E> . By density of E in A and E> in A> , the limits

|+
0 A= lim

s � &�
:$ s(:s)&1A, |&

0 A>= lim
s � &�

:s:$ &s(10 �A>)

exist for all A # A, A> # A> , defining *-morphisms |+
0 : A � A and

|&
0 : A> � A. Therefore the limits asserted in the Proposition also hold,

with |+
t =:$ &t|+

0 :t, |&
t =(:t)&1|&

0 :$ t
> . K

1.4. Proposition

If A # A, |+
t A=10�|tA where |t is a *-morphism A � A> .

Notice first that if E # E, (A5) gives

|
0

&�
ds sup

X # A0 , &X&�1

&[X�1> , (:s)&1 E]&<�

or

|
0

&�
ds sup

Y # A0 , &Y&�1

&[Y�1> , :$ s(:s)&1E]&<�

64 Ruelle



The derivative of s [ :$ s(:s)&1E has bounded norm in view of Lemma 1.1,
and the function

s [ sup
Y # A0 , &Y&�1

&[Y�1> , :$ s(:s)&1E]&

has thus bounded Lipschitz constant. Therefore

lim
s � &�

sup
Y # A0 , &Y&�1

&[Y�1> , :$ s(:s)&1E]&=0

or

(\Y # A0) lim
s � &�

[Y�1> , :$ s(:s)&1E]=0

Putting :$ s(:s)&1 E in matrix form (eij (s)) with i, j # 1,..., n, we see that
eij (s) � 0 if i{ j and eii (s)&ejj (s) � 0 when s � &�. Writing

E(s)=
1
n

:
n

i=1

eii (s)

we have lims � &� &:$ s(:s)&1E&10�E(s)&=0. For general A, we can also
write :$ s(:s)&1A in matrix form (aij (s) and define A(s)=(1�n) �n

i=1 aii (s).
Approximating A by E # E shows that

lim
s � &�

&:$ &s:sA&10�A(s)&=0

or equivalently that |+
t A=10�|t A where |t is a *-morphism A � A> .

K

1.5. Proposition

|t : A � A> and |&
t : A> � A are reciprocal *-isomorphisms.

Choose t # R and A # A. Writing B=|t A, A$=|&
t B, we can in view

of Propositions 1.3, 1.4 choose S<0 such that if s<S,

&:$ (t, s) :(s, t) A&10�B&<= (6)

&:(t, s) :$ (s, t)(10�B)&A$&<= (7)

(6) implies

&A&:(t, s) :$ (s, t)(10�B)&<= (8)

and (7), (8) give

&A&A$&<2=

65Natural Nonequilibrium States in Quantum Statistical Mechanics



hence |&
t |t A=A$=A. If A> # A> , a similar argument gives

|t |&
t A>=A> . K

We may summarize our findings as follows

1.6. Theorem

There is a *-isomorphism |t : A � A> such that

lim
s � &�

:$ (t, s) :(s, t) A=10 �|t A

lim
s � &�

:(t, s) :$ (s, t)(10 �A>)=|&1
t A>

In particular |t:(t, {)=:$ >(t, {) |{ .

This follows from Propositions 1.3 and 1.5. K

2. NONEQUILIBRIUM STATES

We shall call natural nonequilibrium states those states which, for the
evolution (:t), reduce in the distant past to equilibrium states for the evolu-
tion (:$ t). This definition is possible because in the distant past (:t) and (:$ t)
are close to each other as a result of our assumption (A5). We now discuss
further this assumption.

2.1. Discussion of Assumption (A5)

Physics suggests that, when A, B are spatially localized, the estimate

&[B, :tA]&rt&d�2

typically holds for a d-dimensional quantum lattice system. Specifically,
some examples treated by Bratteli and Robinson ([1, 5.4.9 and 6.2.14])
conform to this diffusive type of behavior (these examples are however
rather special). When d�3, the t&d�2 estimate implies that

| dt &[B, :tA]&<�

which is basically our assumption (A5). Consider now the case of time
independent forces, i.e., let (:t) be a one-parameter group of auto-
morphisms. If we have

|
�

&�
dt &[B, :tA]&<� for A, B # E
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where E is a norm-dense *-subalgebra of A, Bratteli and Robinson say
that (:t) is L1(E) asymptotically abelian ([1, Definition 5.4.8]). Under this
condition they prove the existence of our *-morphism |+ ([1, Proposition
5.4.10]) which they call Mo% ller morphism by analogy with quantum scatter-
ing theory. Bratteli and Robinson point out that the difficulty in proving
L1 asymptotic abelianness in particular models is not surprising since the
existence of the Mo% ller morphism is a form of ergodicity.2 The approach of
ref. 1 has technical advantages over the approach adopted here in Section 1,
but our discussion has the interest of applying to time dependent forces
(and of being self contained).

As we have said, the assumption (A5) means that :sE or :$ s(1�E>)
rapidly diffuse away from the region of interaction between the system 7
and the reservoirs R1 , R2 ,... Such a diffusion is possible because the reser-
voirs are infinite, and more precisely of dimension �3. This dimensional
restriction is physically not surprising if we think of a macroscopic descrip-
tion of the state of our system by a continuous temperature function T
tending to finite values ;&1

1 , ;&1
2 ,... at infinity in the different reservoirs. In

the simplest case T should satisfy the heat equation 2T=0, but if d=1, or
2 this implies that T is constant or unbounded. We are thus forced to
imagine that our reservoirs have dimension 3 or more.

Physically one expects that (for time independent forces) the time trans-
lation invariance and uniqueness of the natural nonequilibrium state may be
broken. The formalism presented here does not cover these situations.
Indeed our natural nonequilibrium state \ will, under natural assump-
tions,3 satisfy the mixing property limt � � |\(A:tB)&\(A) \(B)|=0 and
therefore \ has no nontrivial decomposition into time invariant or periodic
states. In conclusion, we expect that some but not all situations far from
equilibrium are covered by our assumption (A5).
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2 I am indebted to Derek Robinson for pointing out Section 5.4 of ref. 1 in connection with
our assumption (A5). For an example of nontrivial study of ergodicity in an infinite system,
the reader is referred to Fidaleo and Liverani.(7)

3 The state \ will turn out to be conjugate to the product }a>0 _a of KMS states describing
reservoirs, and (using central decomposition) it is natural to assume that the _a are factor
states. Therefore }a>0 _a and \ are factor states. Assume also the asymptotic abelianness
condition

lim
t� �

&[A, :tB]&=0 for A, B # A

(this is implied by L1 asymptotic abelianness). Then the mixing property

lim
t � �

|\(A:tB)&\(A) \(B)|=0

holds (see [1, Example 4.3.24]).



2.2. Definition of Natural Nonequilibrium States

Let _a be a state on Aa , invariant under the one-parameter group (:$ t
a)

for a=0, 1, 2,... . We shall later impose that the _a with a>0 satisfy the
KMS condition (see below). The GNS construction gives for each a a
Hilbert space Ha , a representation ?a of Aa by operators on Ha , a vector
0a such that

_a( } )=(0a , ?a( } ) 0a)

and one-parameter groups Ua( } ) of unitary operators such that

Ua(t) 0a=0a , Ua(t) ?a(A) Ua(t)&1=?a(:$ t
aA)

In particular _=}a�0 _a is a :$ t-invariant state on A. We say that the
time dependent state \t on A is a natural nonequilibrium state (NNES) if
it is of the form

\t= lim
s � &�

:(s, t)* _

or

\t(A)= lim
s � &�

_(:(s, t) A)= lim
s � &�

_(:$ (t, s) :(s, t) A)

=_(|+
t A)=_>(|tA)

where _>=}a>0 _a . We may thus write

\t=|t*_>

which shows that the NNES \t does not depend on the initial state _0 of
the system 7. Our definition gives in particular

\t(:(t, {) A)=\{(A)

We also have

\t(A)=_(A)+i |
t

&�
du _([h(u), :(u, t) A]) (9)

[where we have used the formula &i � t
s du :$ (t, u)[h(u), :(u, t) A]=

A&:$ (t, s) :(s, t) A, which follows from (3)].
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2.3. The KMS Condition

Let ;a>0. The (:$ t
a)-invariant state _a satisfies the ;a-KMS condition

if, whenever A, B # Aa , there is a bounded continuous function F on
[z : 0�Im z�;a], analytic for z<Im z<;a and such that for all real t

_a(B .:$ tA)=F(t), _a(:$ tA .B)=F(t+i;a)

[The physical meaning of this condition is that _a is an equilibrium state
at temperature ;&1

a ].
We shall say that \t is a ;-NNES if it is a NNES associated with

;a -KMS states _a . It describes thus nonequilibrium in the presence of
reservoirs Ra at various temperatures ;&1

a .
We assume for simplicity that the ?a are faithful representations (this

is natural: it is physically reasonable to assume that the Aa have quasi-local
structure, with simple local algebras, so that the Aa are simple algebras. See
[1, Section 2.6.3]).

3. TIME INDEPENDENT FORCES AND NONEQUILIBRIUM
STEADY STATES

We shall now consider the situation where the forces acting on the
system 7 are time independent: h(t)=h, :(s, t)=:t&s, |t=|, and the
NNES \t=\ is a nonequilibrium steady state (NESS). We have thus

|:t=:$ t
> |, \=|*_>

\(A)=_(A)+i |
0

&�
du _([h, :&uA]) (10)

\(B .:tA)=_>(|B .:$ t
>|A)

when A, B # A. If the _a are ;a -KMS states for a>0, we shall say that \
is a ;-NESS.

Consider the elements B # A> such that

&B&1= lim
= � 0

inf {:
j

`
a>0

&Bja& : "B&:
j

}
a>0

Bja"<==
These elements form a *-algebra A1

> with norm & .&1�& .&.
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Let H>=}� a>0 Ha and B(H>) be the *-algebra of bounded
operators on H> . Since the ?a are faithful, the map }a>0 ?a :
}a>0 Aa � B(H>) extends to a faithful *-representation ?> of A> by
bounded operators on H> .

Write t=(t1 , t2 ,...) and let :̂t=}a>0 :$ ta
a =:$ (t1)�:$ (t2)� } } } , i.e.,

:̂t is the automorphism of A> such that

?>(:̂tA)=\ `
a>0

Ua(ta)+ ?>(A) \ `
a>0

U>(ta)+
&1

(:̂t is unique because ?> is faithful).

3.1. Proposition

If A # A> , B # A>
1, there is a complex function F of the complex

variables za , continuous and bounded by &A& .&B&1 on >a>0 [za : 0�
Im za�;a], analytic in >a>0 [za : 0<Im za<;a], and such that

_>(B . :̂tA)=F(t), _>(:̂tA .B)=F(t+i;)

where ;=(;1 , ;2 ,...).
Take first A, B in the algebraic tensor product }a>0 Aa , viz.,

A=:
i

�Aia , B=:
j

�Bja

Then

_>(B . :̂tA)=:
ij

`
a>0

_a(Bja:$ taAia)

extends, by the KMS condition for the _a , to a function F bounded and
continuous on >a>0 [za : 0�Im za�;a], and analytic in >a>0 [za : 0<
Im za<;a]. Using the Cauchy formula in several variables we also see that
|F(z1 , z2 ,...)| has the sup-norm

&F&= max
'1 , '2 ,...

sup
t

|F(t1+i'1;1 , t2+i'2 ;2 ,...)|

where '1 , '2 ,... take the values 0 or 1. Using the KMS condition and
separating the indices a$ with ;a$=0 from the indices a" with ;a"=1 we
find that
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F(t1+i'1;1 , t2+i'2;2 ,...)

=:
ij

`
a$

`
a"

_a$ (Bja$ .:$ t$aAia$) _a" (:$ t$aA ia$ .Bja")

=:
ij

_ \}
a$

Bja$ \}
a

:$ taAia+ }
a"

Bja"+=:
j

_ \}
a$

Bja$ :̂tA }
a"

B ja"+
hence

&F&�&A& :
j

`
a�0

&Bja&�&A& .&B&1

Using the density of }a>0 Aa in A> and in A1
> concludes the proof of

the proposition. K

Note that Proposition 3.1 remains true if one changes the assumptions
to B # A> , A # A1

> .

3.2. Corollary

There is a dense *-subalgebra A(1) of A such that if A # A, B # A(1)

or B # A, A # A(1), the function t [ \(B .:tA) extends to a continuous
function on [z : 0�Im z�mina ;a], analytic in [z : 0<Im z<mina ;a].

Taking A(1)=|&1A1
> , this follows from (10) and Proposition 3.1. K

Under suitable physically reasonable conditions one should be able to
take A(1)=A1=[A # A : &A&1<�] where

&A&1= lim
= � 0

inf {:
j

`
a�0

&Aja& : "A&:
j

}
a�0

Aja "<==
3.3. The Modular Group of \

As pointed out by M. Winnink (private communication), if
(H\ , ?\ , 0\) is the cyclic representation associated with \, then 0\ is cyclic
and separating for ?\(A)", and therefore a modular group ({t) of
automorphisms of ?\(A)" is defined. In fact we may write H\=H>=
}� a>0 H_ , ?\=?>|=(}a>0 ?a) |, 0\=0>=}a>0 0a and

{t |?\(A)=?\ }
a>0

:$ &;at
a ?&1

\

Therefore the modular group ({t) corresponds asymptotically in each reser-
voir Ra to the noninteracting evolution (:$ t

a) accelerated by the factor &;a .
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4. A GENERAL LINEAR RESPONSE FORMULA

4.1. Proposition

For a perturbation $h( } ) of the time dependent interaction h( } ), the
time dependent nonequilibrium state \} satisfies the following linear
response formula

$\t(A)=i |
t

&�
d{ \t([:(t, {) $h({), A])

when A # (:t)&1 E. More precisely, if k: R � F is bounded continuous
self-adjoint and \*

t is the NNES corresponding to the interaction
h( } )+*k( } ), then * [ \*

t (A) is differentiable at *=0 when A # (:t)&1 E,
and

d
d*

\*
t (A) } *=0

=i |
t

&�
d{ \t([:(t, {) k({), A])

Using (9) we have

\*
t (A)=_(A)+i lim

s � &� |
t

s
du _([h(u)+*k(u), :*(u, t) A]) (11)

where :* is obtained from : by the replacement h [ h+*k. From (5) we
get also

:*(u, t) A&:0(u, t) A=i |
t

u
d{ :*(u, {)[*k({), :0({, t) A] (12)

where :0=:. From (11) we obtain

\*
t (A)&\0

t (A)= lim
s � &�

(21(s)+22(s))

where

21(s)=i |
t

s
du _([*k(u), :0(u, t) A])

22(s)=i |
t

s
du _([h(u)+*k(u), :*(u, t) A&:0(u, t) A])

72 Ruelle



and, using (12), (3),

22(s)=&|
t

s
du |

t

u
d{ _([h(u)+*k(u), :*(u, {)[*k({), :0({, t) A]])

= &i |
t

s
d{ |

{

s
du

d
du

_(:*(u, {)[*k({), :0({, t) A])

= &i |
t

s
d{(_([*k({), :0({, t) A])&_(:*(s, {)[*k({), :0({, t) A]))

so that

(\*
t (A)&\0

t (A))�*=i lim
s � &� |

t

s
d{ _(:*(s, {)[k({), :0({, t) A]) (13)

If A # (:t)&1E we can, given =>0, choose s0 such that

|
s

&�
d{ &[k({), :({, t) A]&<=

if s<s0 . Therefore (13) implies that * [ \*
t (A) is differentiable at 0, with

d
d*

\*
t (A) }*=0

=i lim
s � &� |

t

&�
d{ _(:(s, {)[k({), :({, t) A])

=i lim
s � &� |

t

&�
d{ _(:(s, t)[:(t, {) k({), A]) (14)

and the proposition follows readily.

4.2. Corollary

Under the conditions of the Proposition 4.1, for time independent h( } )
and \.=\, we have

d
d*

\*
t (A) } *=0

=i |
t

&�
d{ \([:(t, {) k({), A])

=i |
�

0
ds \([:&sk(t&s), A])
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4.3. Remarks

If one can choose E independent of * such that

|
0

&�
d{ &[k({), :*({, t) A]&

converges when A # E, uniformly for * # (*1 , *2), then * � \*
t (A) is con-

tinuously differentiable on (*1 , *2), and

d
d*

\*
t (A)=i |

t

&�
d{ \*

t ([:*(t, {) k({), A])

Higher order derivatives are also defined, and

d n

d*n \*
t (A)=i nn! | } } } |

{1< } } } <{n<t
d{n } } } d{1

_\*
{1

([k({1), :*({1 , {2)[k({2),..., [k({n), :*({n , t) A] } } } ]])

as is seen by repeated differentiation of

d
d*

\*
t (A)=i lim

s � &� |
t

&�
d{ _(:*(s, {)[k({), :*({, t) A])

(obtained by restoring the dependence on * in (14)), and Lemma 1.2. We
may also write

d n

d*n \*
t (A)=inn ! | } } } |

{1< } } } <{n<t
d{n } } } d{1

_\*
t ([:*(t, {1) k({1), [:*(t, {2) k({2),..., [:*(t, {n), A] } } } ]])

For time independent h( } ) and k( } )=k, we have thus

1
n !

d n

d*n \*(A)} *=0

=in |
�

0
d_1 } } } |

�

0
d_n \([k, :_1[k,..., [k, :_n A] } } } ]])
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